
The Embedded Linux Quick Start Guide

Workbook

Version 1.4

May 2016

Copyright © 2011-2016, 2net Limited - 1 -

 0 Preparation
These notes are to help you get up and running with embedded Linux on the BeagleBone Black.

At this point, you should have

• A laptop or PC running Ubuntu 14.04 (*). Ideally, it should have a quad core processor and
at least 4 GiB or RAM

• A BeagleBone Black board and the mini USB A/B to USB A cable supplied with the board

• An RS-232 serial to USB cable such as the FTDI TTL-232R-3V3 available from Digi-Key,
Element 14 and others.

• A micro SD card of at least 2 GB and a card reader

• An Ethernet cross-over cable, available from many places

(*) The exercises were tested using Ubuntu 14.04, and some of the instructions are specific to
14.04, such as the list of packages to install, but apart from that you could use any recent Linux
distribution with a little adaptation. You can use a virtual machine such as VmWare or Virtual Box
so long as you provision it appropriately.

 0.1 Get the sample files
There are some files you will need to complete the exercises. In the exercises I have assumed that
they are installed into directory ~/embedded-linux. You may, of course, place them somewhere
else, but in that case you will need to adjust the paths later on. Open a terminal and enter these
commands:

$ cd ~

$ git clone https://github.com/csimmonds/embedded-linux-quick-start-files.git embedded-linux

Copyright © 2011-2016, 2net Limited - 2 -

 1 Buildroot

Objective
In this exercise you will get a copy of Buildroot and use it to generate the four elements of
embedded Linux: toolchain, bootloader, kernel and root filesystem.

 1.1 Install packages
Buildroot requires some packages to be installed. The Buildroot manual
https://buildroot.org/downloads/manual/manual.html has full details. If you are using Ubuntu 14.04,
you can install them from the command-line like so:

$ sudo apt-get install binutils build-essential bzip2 chrpath cpio g++ \
 git gzip libncurses5-dev libsdl1.2-dev patch perl python rsync sed \
 texinfo unzip util-linux wget

There are another couple of packages that you will need: the terminal emulator, gtkterm, and the
util-linux package which contains the lsblk command that you will use in the next exercise

$ sudo apt-get install gtkterm util-linux

 1.2 Get Buildroot
Download buildroot-2016-02.tar.bz2 from buildroot.org and extract it like so:

$ cd ~
$ tar xf ~/Downloads/buildroot-2016.02.tar.bz2
$ cd buildroot-2016.02

Alternatively, you can clone the Buildroot git archive:

$ cd ~
$ git clone git://git.buildroot.net/buildroot
$ cd buildroot
$ git checkout 2016.02

 1.3 Configure for BeagleBone
Select the default configuration for the target board (look in directory “configs/” to see all the
configurations files):

$ make beaglebone_defconfig

Next, change the C library to glibc, add an ssh server called Dropbear and set the root filesystem
format to a tar file which you can extract onto an SD card later on:

$ make menuconfig
• In Toolchain -> C library, select glibc

• In Target packages->Networking applications enable dropbear

• In Filesystem images select tar, leaving the tar options with default settings

Exit and save the changes

Copyright © 2011-2016, 2net Limited - 3 -

https://buildroot.org/downloads/manual/manual.html

 1.4 Build
On a reasonable spec PC/laptop (quad core, with 4 GiB RAM) the build this takes less than an
hour. It will download 250 MiB of source code and will consume 5 GiB of disk space:

$ make

When complete, you will see that there is a cross toolchain in output/host/usr/bin/, and the
files for the target are in output/images/.

Copyright © 2011-2016, 2net Limited - 4 -

 2 Boot

Objective
Boot the BeagleBone Black from a microSD card using the images created by Buildroot

 2.1 Format the uSD card
There are two possibilities: you may be using an external USB uSD card reader, or you may be
using an internal SD card reader that is present on many laptops. The command lsblk is a useful
tool to find out which device name the SD card has been allocated. In these two examples I am
logged on as user training and the uSD card is a nominal 8 GB part.

External card reader

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 477G 0 disk
├─sda1 8:1 0 500M 0 part /boot/efi
├─sda2 8:4 0 457.6G 0 part /
└─sda5 8:5 0 15.8G 0 part [SWAP]
sdb 8:16 1 7.2G 0 disk

sdb1 8:17 1 7.2G 0 part /media/training/2537-B714 └─

In this case, it is sdb, and it has one partition, sdb1

Internal card reader

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 477G 0 disk
├─sda1 8:1 0 500M 0 part /boot/efi
├─sda2 8:4 0 457.6G 0 part /
└─sda5 8:5 0 15.8G 0 part [SWAP]
mmcblk0 179:0 0 7.2G 0 disk

mmcblk0p1 179:1 0 7.2G 0 part /media/training/2537-B714└─

In this case, it appears as mmcblk0 and the partition is mmcblk0p1

Note that the SD card may have been formatted already, in which case you may see a different
number of partitions with different names.

Use the script format-sdcard.sh to format it, with the device name as a parameter, for example

$ ~/embedded-linux/format-sdcard.sh sdb

This creates two partitions: the first is 67 MiB, formatted as FAT32, and will contain the bootloader
and kernel, the second is 89 MiB, formatted as ext4, and will contain the root filesystem.

Copyright © 2011-2016, 2net Limited - 5 -

Remove and re-insert the SD card and check that the partitions are mounted, and they are
(almost) empty:

$ df -h
Filesystem Size Used Avail Use% Mounted on
udev 3.9G 4.0K 3.9G 1% /dev
tmpfs 790M 1.6M 788M 1% /run
/dev/sda2 451G 358G 70G 84% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
none 5.0M 4.0K 5.0M 1% /run/lock
none 3.9G 178M 3.7G 5% /run/shm
none 100M 48K 100M 1% /run/user
/dev/sda1 496M 19M 478M 4% /boot/efi
/dev/sdb1 67M 468K 66M 1% /media/training/boot
/dev/sdb2 89M 1.6M 81M 2% /media/training/rootfs

 2.2 Copy files to the uSD card
The bootloader files

$ cd ~/buildroot-2016.02/output/images
$ cp MLO u-boot.img uEnv.txt /media/training/boot

The kernel and device tree files

$ cp zImage am335x-boneblack.dtb /media/training/boot
The root file system

$ sudo tar xf rootfs.tar -C /media/training/rootfs
Unmount the partitions

$ sudo umount /media/training/rootfs
$ sudo umount /media/training/boot

Take out the uSD card and put it into the target BeagleBone Black

 2.3 Set up the terminal emulator for the serial console
Plug the serial-to-USB cable (the long thick one) into the 4-pin header on the BeagelBone Black
and into your laptop/PC but do not power on the BBB yet.

Copyright © 2011-2016, 2net Limited - 6 -

Launch gtkterm:

$ gtkterm

Go to Configuration->Port and change the settings as follows:

Save it as the default configuration: Configuration->Save configuration

 2.4 Power up the BeagleBone Black
Make sure that the uSD card is plugged in to the BBB.

Press and hold the boot button to force boot from the uSD card and not the internal flash. You may
release the button once you see text appearing on the serial terminal.

Plug the micro USB cable into the BBB and the other end to your laptop/PC. This will supply power
to the BeaglelBone Black. You should see something like this:

U-Boot SPL 2016.03 (Apr 14 2016 - 10:00:18)
Trying to boot from MMC
reading args
spl_load_image_fat_os: error reading image args, err - -1
reading u-boot.img
reading u-boot.img

U-Boot 2016.03 (Apr 14 2016 - 10:00:18 +0100)

Finally, you should see:

Starting logging: OK
Initializing random number generator... done.
Starting network...
Starting dropbear sshd: OK
[2.426763] PM: CM3 Firmware Version = 0x185

Welcome to Buildroot
beaglebone login:

Copyright © 2011-2016, 2net Limited - 7 -

 2.5 Try it out
Log on as root, no password.

Have a look round, for example:

• What is the kernel command line? (cat /proc/cmdline)

• What type of CPU? (cat /proc/cpuinfo)

• What processes are running? (ps)

• How much free memory? (free)

• How much disk storage is used? (df -h)

• What type of file systems are mounted? (cat /proc/mounts)

• What kernel version (uname -a)

Note: the kernel that is built by Buildroot is version 3.14. It does not include the cape manager and
so does not support device tree overlays. Which means that some capes will not work with this
setup unless you spend some time editing the device tree and adjusting the kernel configuration. If
these things are important to you, then you would be better served by using the stock Debian Linux
images for the BeagleBone Black. The aim of these exercise is to help you understand the process
of building an embedded Linux distribution rather than building something that is specifically
tailored to one platform.

Copyright © 2011-2016, 2net Limited - 8 -

 3 User and network configuration

Objective
To create a user account and set up the target with a static network address.

 3.1 Make the root filesystem writeable
You will find that the root filesystem has been mounted read-only, and so you cannot make any
changes. Therefore, the first thing to do is to make root writeable by remounting it. Enter this
command on the target:

mount -o remount,rw /

 3.2 Set a password for the root user
It would be nice if there was a password for the super-user (root) account. The passwd command
allows you to change a user's password:

passwd
Changing password for root
New password:
Retype password:
Password for root changed by root

Log out, by typing exit or pressing Ctrl-D, and log in again using the new password.

 3.3 Create a user account
Use the id command to find the user and group id of the root user.

Now, create a new user:

mkdir /home
adduser chris
Changing password for chris
Enter the new password (minimum of 5, maximum of 8 characters)
Please use a combination of upper and lower case letters and numbers.
Enter new password:

You can see that the user name has been added to /etc/passwd and the group to /etc/group.

Log out and log in again as the new user, and use id again to show the new user and group ids.

Copyright © 2011-2016, 2net Limited - 9 -

 3.4 Network configuration on the laptop
In this exercise you will create a simple two node network between your laptop/PC and the target
board.

Plug in the Ethernet loopback cable between the BeagleBone Black and your laptop/PC.

Set the IP address of the Ethernet port on your PC to 10.0.0.1 as follows (instructions are for
Ubuntu 14.04):

• Click on the network icon in the menu bar, top right

• Select Edit connections...

• On the Wired tab, select Wired connection1 and click Edit...

• On the Ipv4 Settings tab, change Method from Automatic (DHCP) to Manual

• Click the Add button to add a static address

• Enter Address 10.0.0.1, Netmask 255.0.0.0, then click on Gateway but do not enter an
address

• Click the Save... button and then close the Network Connection dialog box

Copyright © 2011-2016, 2net Limited - 10 -

 3.5 Network configuration on the target
Create a static IP address for the Ethernet port by using vi on the target to edit
/etc/network/interfaces If you are not familiar with vi, there is a short beginners guide at
http://2net.co.uk/downloads/vi-for-beginners.pdf.

Add these lines at the bottom of the file:

auto eth0
iface eth0 inet static

address 10.0.0.2
netmask 255.255.255.0

Now bring up the network:

ifup -a

Check that the Ethernet port is now configured using command ifconfig (on the target):

ifconfig
eth0 Link encap:Ethernet HWaddr 1C:BA:8C:E9:11:DA
 inet addr:10.0.0.2 Bcast:0.0.0.0 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:77 errors:0 dropped:0 overruns:0 frame:0
 TX packets:47 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:16144 (15.7 KiB) TX bytes:6390 (6.2 KiB)
 Interrupt:56

Check that you can ping the laptop from the target and visa versa

Check that you can use ssh (on the host) to log on to the target:

$ ssh root@10.0.0.2

Copyright © 2011-2016, 2net Limited - 11 -

http://2net.co.uk/downloads/vi-for-beginners.pdf

 4 Buildroot

Objective
To experiment with Buildroot.

• Make the root filesystem writeable

• Make the network configuration permanent

• Add a package – a web server – to the root file system

 4.1 Writeable root filesystem
Begin by launching the Buildroot configuration menu:

$ cd ~/buildroot-2016.02
$ make menuconfig

In System configuration, enable remount root filesystem read-write during boot

Exit and save the configuration

 4.2 Network configuration
A simple way to customise the root filesystem image is to create an overlay directory. The files in
the overlay are copied into the final image as the last part of the build process. The configuration
for the BeagelBone is in board/beagelbone, so this is a natural place to put the overlay
directory:

$ cd ~/buildroot-2016.02/board/beaglebone
$ mkdir -p overlay/etc/network

Copy the interfaces file into the overlay:

$ scp root@10.0.0.2:/etc/network/interfaces overlay/etc/network

Now, configure Buildroot to use the overlay, by running make menuconfig.

In System configuration, select Root filesystem overlay directories and enter

board/beaglebone/overlay

Exit and save the configuration

 4.3 Adding a web server
Run make menuconfig

In Target packages->Networking applications enable tinyhttpd

Exit and save the new configuration.

The web pages for tinyhttps are stored in /var/www. You can add one to the overlay:

$ cd ~/buildroot-2016.02/board/beaglebone
$ mkdir -p overlay/var/www
$ cp ~/embedded-linux/index.html overlay/var/www

Copyright © 2011-2016, 2net Limited - 12 -

mailto:root@10.0.0.2

 4.4 Build new system images
$ cd ~/buildroot-2016.02
$ make

The build should only take a minute or two. The end result is in output/images.

 4.5 Re-flashing the new root filesystem
Power off the BeagelBone Black and plug the uSD card into the card reader.

Re flash the the uSD card as you did in exercises 2.1 and 2.2.

Boot up the BeagelBone and check that

1. The root filesystem is writeable

2. The Ethernet device eth0 is configured (by running ifconfig)

3. The web server is running

ps ax shows tinyhttpd

netstat -ltnp shows a server listening on port 80

You should be able to load the page in a web browser using FireFox on the host with URL 10.0.0.2/

Note that the password for root has been reset to the default, empty password. Run the passwd
command again to change it (this is necessary because you will need to use ssh later on)

Copyright © 2011-2016, 2net Limited - 13 -

 5 Cross compiling

Objective
To cross-compile a program and run it on the target using the toolchain created by Buildroot

 5.1 Finding out about the cross toolchain
First, it is convenient to add the toolchain binaries to the path. Enter this line in a shell on the host::

PATH=/home/training/buildroot-2016.02/output/host/usr/bin:$PATH

Note that this changes the PATH in the current shell only; if you want to make the change
permanent, add that line to the bottom of ~/.bashrc.

The toolchain prefix is arm-linux-. Find the version of GCC you are using:

$ arm-linux-gcc -version

When compiling, the toolchain searches for header and library files relative to the sysroot. You can
find the sysroot like this:

$ arm-linux-gcc -print-sysroot

Let''s keep a copy of that path in a shell variable to make the next few lines easier to read, and to
type

$ export SYSROOT=$(arm-linux-gcc -print-sysroot)

Now you can find the location of the header files like this:

$ ls $SYSROOT/usr/include

And you can find the library files like this:

$ ls $SYSROOT/lib
$ ls $SYSROOT/usr/lib

 5.2 Hello world!
Write a hello world program and compile it

$ arm-linux-gcc helloworld.c -o helloworld

You can confirm that it is compiled for an ARM target using the file command:

$ file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.32, not stripped

Copyright © 2011-2016, 2net Limited - 14 -

 5.3 Run the program on the target
To test your program you will have to copy it to the target. There are two ways to do that. You could
power off the target, take out the uSD card, plug it into the reader and write the compiled binary to
the /usr/bin directory on the second partition, and then boot up the target again.

A faster method is to copy it using scp:

$ scp helloworld root@10.0.0.2:/usr/bin

Copyright © 2011-2016, 2net Limited - 15 -

 6 Device tree: stop those LEDs flashing!
The four user LEDs on the target are configured to trigger on certain events. By changing the
device tree, you can change the triggers.

The kernel source code is in:

~/buildroot-2016.02/board/beaglebone/output/build/linux-
7f280334068b7c875ade51f8f3921ab311f0c824/

In that directory, edit arch/arm/boot/dts/am335x-bone-common.dtsi

Look for this:

 led@2 {
 label = "beaglebone:green:heartbeat";
 gpios = <&gpio1 21 GPIO_ACTIVE_HIGH>;
 linux,default-trigger = "heartbeat";
 default-state = "off";
 };

Delete the default-trigger line completely. Repeat for led@3, led@4, and led@5.

Re-build the device tree binary (.dtb):

$ cd ~/buildroot-2016.02
$ make linux-rebuild

Power off the BeagleBone, take out the uSD card and copy output/images/am335x-
boneblack.dtb to the boot partition.

Boot up the target, and check that the user LEDs no longer flash.

Copyright © 2011-2016, 2net Limited - 16 -

 7 Input and output

Objective
To write a program that will interface with the outside world: in this case flashing the user LEDs

 7.1 Make those LEDs flash again
The LEDs are represented by these four directories

/sys/class/leds/beaglebone:green:heartbeat
/sys/class/leds/beaglebone:green:mmc0
/sys/class/leds/beaglebone:green:usr2
/sys/class/leds/beaglebone:green:usr3

Each directory contains a file named brightness: writing the string “255” tunes it on and the string
“0” turns it off.

Write a program with this loop:

• Write the string “0” to the brightness file

• Sleep for 500 ms (usleep(500000))

• Write the string “255” to the brightness file

• Sleep for 500 ms

Cross compile it and load it into the target as you did in lab 5

There is a worked solution in ~/embedded-linux/led-flash

Copyright © 2011-2016, 2net Limited - 17 -

 8 Flash file systems

Objective
To use the eMMC flash memory on the target board to store the root file system.

 8.1 The easy way
Copy the disk image from the uSD card to eMMC:

dd if=/dev/mmcblk0 of=/dev/mmcblk1 bs=1M count=196

Reboot, pressing the boot button to that it boots from uSD card still.

mount /dev/mmcblk1p1 /mnt

Edit /mnt/uEnv.txt, and change

bootpart=1:1
bootdir=
uenvcmd=run loadimage;run loadramdisk;run findfdt;run loadfdt;run ramboot

Change bootpart to 1:1 as shown above.

unmount /mnt

Power off, remove the uSD card

Power on, and check that it boots from eMMC now

 8.2 The correct way
It is inherently risky to copy a live filesystem from one device to another, as described in the last
exercise. The main issue is that any recent file writes will be missed, which is especially a problem
for files containing structured data such as databases. In this simple case, there is very little file
writing going on and so it works fine.

It would be more robust to install file system tools into the target image and use them to create a
partition table, format the partitions, and then untar rootfs.tar to eMMC, handling any errors that
may occur.

However, that is more complex than we can handle in a short workshop such as this.

Copyright © 2011-2016, 2net Limited - 18 -

	0 Preparation
	0.1 Get the sample files

	1 Buildroot
	1.1 Install packages
	1.2 Get Buildroot
	1.3 Configure for BeagleBone
	1.4 Build

	2 Boot
	2.1 Format the uSD card
	2.2 Copy files to the uSD card
	2.3 Set up the terminal emulator for the serial console
	2.4 Power up the BeagleBone Black
	2.5 Try it out

	3 User and network configuration
	3.1 Make the root filesystem writeable
	3.2 Set a password for the root user
	3.3 Create a user account
	3.4 Network configuration on the laptop
	3.5 Network configuration on the target

	4 Buildroot
	4.1 Writeable root filesystem
	4.2 Network configuration
	4.3 Adding a web server
	4.4 Build new system images
	4.5 Re-flashing the new root filesystem

	5 Cross compiling
	5.1 Finding out about the cross toolchain
	5.2 Hello world!
	5.3 Run the program on the target

	6 Device tree: stop those LEDs flashing!
	7 Input and output
	7.1 Make those LEDs flash again

	8 Flash file systems
	8.1 The easy way
	8.2 The correct way

